ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СП6ГУТ)

Кафедра экологии и безопасности жизнедеятельности

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО ДИСЦИПЛИНЕ «ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ КОНТРОЛЯ КАЧЕСТВА ОКРУЖАЮЩЕЙ СРЕДЫ»

Направление подготовки 05.04.06 Экология и природопользование Разработчик: доцент, к.т.н, Манвелова Н.Е.

Тема 1-3: « Качественный дробный и систематический анализы»

Практические задания

- 1. Вычислить объем V соляной кислоты (плотность d=1,19 г/см³), который нужно взять для приготовления 500,0 мл 0,5000 N раствора.
- а) $V_{HCl} = 7,67$ мл;
- б) $V_{HCl}=9,25$ мл.
- 2. Растворимость S сульфата кальция $CaSO_4$ равна 1 г/дм³. Этот насыщенный раствор смешивают с равным объемом оксалата аммония $(NH_4)_2C_2O_4$, содержащего 0,0248 г соли в 1 л. Вычислить ионное произведение I концентраций оксалата кальция в момент сливания растворов и решить, образуется ли осадок CaC_2O_4 . Произведение растворимости $SP_{CaC_2O_4} = 2,3\cdot10^{-9} \, (\text{моль/л})^2$.
- а) не образуется, т.к. $IP_{CaC_2O_4} = 5,34 \cdot 10^{-10}$ (моль/л)²;
- б) образуется, т.к. $IP_{CaC_2O_4} = 3,68 \cdot 10^{-7} \text{ (моль/л)}^2$.
- 3. Вычислить [H $^+$] и pH 0,05 N раствора муравьиной кислоты. $K_{i\, HCOOH} = 1,772\cdot 10^{-4}.$
- а) $[H^+]=2,98\cdot10^{-3}$ моль/л; pH=2,53;
- б) $[H^+]=2,51\cdot10^{-3}$ моль/л; pH=
- 4. Как изменится pH раствора при добавлении 10,0 мл 1,0 N раствора соляной кислоты к 1 л ацетатной буферной смеси, состоящей из 0,10 N уксусной кислоты и 1,0 N ацетата натрия. $K_{i CH_3 COOH} = 1,754 \cdot 10^{-5}$?
- a) Δ pH=0,05;
- б) Δ рН=0,07.

Примеры решения задач

1. Вычислить pH 0,25%-ного раствора аммиака. $K_i(NH_3 \cdot H_2O) = 1,74 \cdot 10^{-5}$.

Решение:

Раствор аммиака в воде является слабым основанием, ионизирующим по уравнению:

$$NH_3 \cdot H_2O \stackrel{K_i}{\longleftrightarrow} NH_4^+ + OH^-$$

$$K_i = \frac{[NH_4] \cdot [OH^-]}{[NH_3 \cdot H_2 O]}$$
, откуда $[OH^-] = [NH_4^+] = \sqrt{K_i \cdot [NH_3 \cdot H_2 O]}$.

Пусть объем раствора $V_{p-pa}=1$ л, его плотность d=1 г/мл. Тогда в 1 л раствора содержится:

$$\frac{1000 \cdot 0.25}{100}$$
=2,5 г NH₃, откуда

$$C_{NH_3} = [NH_3 \cdot H_2 O] = \frac{2,5}{(14+3)} = 0,15$$
 моль / л.

$$[OH^-] = \sqrt{1,74 \cdot 10^{-5} \cdot 0,15} = 1,60 \cdot 10^{-3} \text{ моль/л.}$$

 $pOH = -\lg[OH^-] = -\lg(1,60 \cdot 10^{-3}) = 2,80.$
 $pH = 14,0-pOH = 14,0-2,80 = 11,2.$

Ответ: pH p-pa $NH_3 = 11,2$.

2. Вычислить произведение растворимости SP Fe(OH)₃, если растворимость его в воде $S_{\text{Fe(OH)}_3}$ =2 · 10⁻³ г/дм³.

Решение:

Гидроксид железа (III) ионизирует по уравнению: $Fe(OH)_3 \leftrightarrow Fe^{3+} + 3OH^-$ Выражение произведения растворимости для него:

$$SP_{Fe(OH)_3} = [Fe^{3+}] \cdot [OH^-]^3.$$

Можно показать, что растворимость S и произведение растворимости SP связаны выражением $SP = (n^n \cdot m^m) \cdot S^{(n+m)}$, где n, m - число катионов и анионов соответственно:

$$SP=(1^1\cdot 3^3)\cdot S^{(1+3)}=27S^4$$
.

В приведенных формулах концентрации должны быть в молях на литр, поэтому:

$$\begin{split} \mathrm{S}{=}2\cdot10^{-8}\mathrm{\Gamma/\pi}{=}\frac{2\cdot10^{-8}\:/(M_{Fe(OH)_3}\:)}{1}{=}\frac{2\cdot10^{-8}\:/107}{1}{=}1,87\cdot10^{-10}\:\mathrm{моль/\pi},\\ \mathrm{SP}{=}27\cdot(1,87\cdot10^{-10})^4{=}3,30\cdot10^{-38}\:(\mathrm{моль/\pi})^4. \end{split}$$

Ответ: $SP_{Fe(OH)_3} = 3,30 \cdot 10^{-38} \text{ (моль/л)}^4$.

Вопросы

- 1. Чем химические методы анализа отличаются от инструментальных?
- 2. В чем заключается условность понятия «степень окисления» атома элемента?
- 3. Какие аналитические реакции называются «сухими»?
- 4. На чем основано отнесение иона к той или иной аналитической группе?
- 5. Какие ионы открывают дробным анализом и при систематическом ходе анализа?
- 6. В каком виде отделяют амфотерные катионы при кислотно-щелочной системе?
- 7. Общие и отличительные реакции галогенид-анионов.
- 8. Сформулировать закон действующих масс.
- 9. Чем химическое равновесие отличается от механического?
- 10. Способы изменения равновесного состояния.
- 11. Какие проводники относят к электролитам?
- 12. Как степень ионизации молекул вещества зависит от его концентрации?
- 13. Связь общей константы ионизации многоосновной кислоты с константами отдельных ступеней.

- 14. Как подавить гидролиз соли слабого основания?
- 15. Расчет рН раствора соли, подвергающейся гидролизу.
- 16. Основные положения протолитической теории кислот и оснований.
- 17. Какие смеси обладают буферирующим свойством?
- 18. Анализ уравнения Henderson-Hasselbalch.
- 19. Суть буферирующего действия на примере системы HCOOH+HCOONa.
- 20. Связь растворимости малорастворимого соединения и его произведения растворимостей.
- 21. Как нерастворимый в кислотах BaSO₄ перевести в раствор?

- 1. В ионных уравнениях в молекулярном виде записывают следующие вещества:
 - а) соли и основания;
 - б) кислоты и простые вещества;
 - в) газы, простые, малорастворимые, малоионизирующие вещества.
- 2. Катион никеля Ni^{2+} можно открыть дробным анализом по реакции с:
 - а) гидроксидом натрия;
 - б) диметилглиоксимом;
 - в) избыток водного раствора аммиака.
- 3. Константа химического равновесия Ке может принимать значения:
 - a) $-\infty < K_e < \infty$;
 - $\mathfrak{G})\ 0 < \mathfrak{K}_{\mathrm{e}} < \infty;$
 - B) $0 \le K_e \le \infty$.
- 4. Показатели рН и рОН водного раствора при температуре 25° С связаны между собой соотношением:
 - a) pH+pOH=14
 - б) (pH)·(pOH)=14
 - B) pH+pOH= $\sqrt{14}$.
- 5. рН раствора соли, подвергающейся гидролизу по катиону:
 - а) больше 7;
 - б) меньше 7;
 - в) больше 7 или меньше 7 в зависимости от концентрации раствора.
- 6. Молярность и нормальность раствора численно совпадают, если фактор эквивалентности f равен:
 - a) f=0;
 - б) f=1;
 - B) f=-1
- 7. Среднеионный коэффициент активности γ_{\pm} можно принять равным 1, если концентрация раствора:
 - а) $c \rightarrow 0$; б) c=1 моль/л; в) c=0,1 моль/л.

Тема 4-5 «КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ»

Практические задания

1. Рассчитать массу силикатной породы, содержащей 7% CaO, которая необходима для получения 0,5 г CaSO₄.

Ответ: а) 2,94 г; б) 5,36 г.

- 2. На титрование навески 0,1560 г х.ч. янтарной кислоты $H_2C_4H_4O_4$ израсходовано 25,00 мл гидроксида натрия. Вычислить нормальность раствора гидроксида натрия и его титр по соляной кислоте $T_{\text{NaOH/HCl}}$.
- а) $N_{NaOH} = 0,1058$ моль экв/л;
- б) $T_{\text{NaOH/HCl}} = 0,003862 \text{ г/мл.}$
- 3. Навеску m=0,5000 г известняка растворили в 25,00 мл 0,5100 N раствора соляной кислоты. Избыток кислоты оттитровали 6,5 мл 0,4900 N раствора NaOH. Вычислить массовое процентное содержание карбоната кальция CaCO₃ в известняке.
- a) ω_{CaCO_3} =87,3%; б) ω_{CaCO_3} =95,7%.
- 4. Из 0,5100 г руды медь после ряда операций была переведена в раствор в виде соли меди (II). При добавлении к этому раствору избытка иодида калия выделился иод, на титрование которого пошло 14,10 мл тиосульфата натрия $Na_2S_2O_3 \cdot 5H_2O$ с титром по меди $T_{TC/Cu}$ =0,006500 г/мл. Сколько весовых процентов меди содержит руда?
- a) $\omega_{cu}=20,05\%$;6) $\omega_{cu}=17,97\%$.

Примеры решения задач

1. Вычислить фактор пересчета для определения NH_3 , если после осаждения его в виде $(NH_4)_2PtCl_6$ получена гравиметрическая форма Pt.

Решение

1 моль Pt образуется из 1 моль $(NH_4)_2PtCl_6$, на образование которого идут 2 моль NH_3 . Фактор пересчета равен:

$$F = \frac{2M(NH_3)}{M(Pt)} = \frac{2 \cdot 17}{195} = 0.174.$$

Ответ: F=0,174.

3.

2. Из 1,450 г технического Na_2SO_3 приготовили 200 мл раствора. На титрование 20,0 мл его израсходовали 16,2 мл 0,0124 N раствора йода. Определить процентное содержание Na_2SO_3 в образце.

Решение

Приведен пример прямого титрования с протекающей реакцией $Na_2SO_3 + I_2 + H_2O = Na_2SO_4 + 2HI.$

По закону эквивалентов

$$n_{Na_2SO_3} = n_{I_2} = N_{I_2} \cdot V_{I_2} = 0,0124 \cdot 16,2 \cdot 10^{-3} = 2,01 \cdot 10^{-4}$$
 моль.

Это составляет:

$$m_{Na_2SO_3} = n_{Na_2SO_3} \cdot \Im_{Na_2SO_3} = n_{Na_2SO_3} \cdot \frac{M_{Na_2SO_3}}{2} = 2,01 \cdot 10^{-4} \cdot \frac{126}{2} = 0,0126\varepsilon.$$

Это масса сульфита в 20 мл раствора, в 200 мл – $m_{Na_2SO_3}=0,126$ г Процентное содержание

$$\omega_{Na_2SO_3} = \sec^{\circ}\% = \frac{m}{m_{mex}} \cdot 100\% = \frac{0,126}{1,450} \cdot 100\% = 8,69\%.$$

Otbet: $\omega_{Na,SO_3} = 8,69\%$

Вопросы

- 1. Сущность гравиметрического анализа.
- 2. Как достигается полнота осаждения осаждаемой формы?
- 3. Требования к гравиметрической форме в весовом анализе.
- 4. Методы объемного анализа по типам используемых реакций.
- 5. Требования к веществам для титрованных растворов.
- 6. Какие кислотно-основные индикаторы вы знаете?
- 7. От чего зависит внешний вид кривой титрования?
- 8. Что отражено в термине перманганатометрия?
- 9. Как используют заместительное титрование в йодометрии?
- 10. Какие вещества называют комплексонами?

- 1. При определении кальция его целесообразно осаждать в виде:
- a) CaSO₄;
- б) CaCO₃;
- в) CaC_2O_4 .
- 2. Потери при промывке осадка Fe(OH)₃ будут наименьшими при использовании:
 - а) водного раствора NH₃;
 - б) дистиллированной Н₂О;
 - в) растворы NH₄NO₃.
- 3. Индикаторы в титриметрии используют для:
 - а) ускорения реакции;
 - б) определения момента установления состояния эквивалентности;
 - в) получения окрашенного раствора.
- 4. Расчет массы определяемого вещества m_k ведут по титру титранта по этому веществу $T_{i/k}$ и объему титранта V_i по формуле:
 - a) $m_k = T_{i/\kappa} \cdot V_i$;
 - $\delta) m_k = \frac{T_{i/k}}{V_i};$
 - $\mathbf{B)} \ \mathbf{m_k} = \frac{\mathbf{V_i}}{\mathbf{T_i / k}}.$

Тема 6,7 «ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА» Практические задания

- 1. Три повторных анализа образца дали среднее значение содержания $\bar{x} = 72.10\%$ стандартное хлорида И отклонение единичного определения S=0.40%. Определить доверительный интервал, МОГУТ находиться результаты отдельного определения при доверительной вероятности Р=0,95.
- a) $71,11 < x_0 < 73,09$.
- б) 71,36<x₀<72,84.
- 2. Вычислить силу тока в ячейке, содержащей 0,1 N раствор хлорида калия с электродами площадью по 4 см² и расстоянием между ними 0,5 см, если прилагаемое напряжение составляет 400 mB, а удельная электропроводимость $\alpha_{\text{KCl}}=1,167 \text{ S}\cdot\text{m}^{-1}$.
- a) I=42,5 A.
- б) I=37,3 mA.
- 3. При кондуктометрическом титровании 50 мл соляной кислоты 1 N раствором гидроксида калия получили следующие результаты:

Объем 1 N раствора КОН, V, мл	3,2	6,0	9,2	15,6	20,0	
23,5						_
Уд-я электропроводимость, α , $Om^{-1} \cdot cm^{-1}$	3,20	2,50	1,85	1,65	2,35	
2,95						

Построить кривую титрования и вычислить нормальность HCl.

- a) $c_{HCl} = 0.25 \text{ N}.$
- б) c_{HCl}=1,25 N.
- 4. Рассчитать концентрацию Cu^{2+} в растворе, если при $25^{\rm o}$ С потенциал медного электрода $\phi_{Cu^{2+}/Cu^0}=0,337~{\rm B}.$
- а) 0,0117 моль/л.
- б) 0,0234 моль/л.
- 5. Построить кривую потенциометрического титрования в координатах ϕ -V. Рассчитать концентрацию CaCl₂ в растворе (г/л), если при титровании 20,0 мл анализируемого ратвора 0,0500 N раствором $Hg_2(NO_3)_2$ получили:

$$V_{Hg_2(NO_3)_2}$$
,мл 10,0 15,0 17,0 17,5 17,9 18,0 18,1 18,5 19,0 ϕ , мВ 382 411 442 457 498 613 679 700 709

- а) 2,50 г/л.
- б) 3,50 г/л.

Примеры решения задач

1. По паспорту содержание компонента 2,12%. При четырех измерениях получены значения: 2,09%, 2,16%, 2,18%, 2,19%. При доверительной вероятности P=95% определить, имеется ли систематическая ошибка анализа.

Решение

1) Находим среднее арифметическое

$$\bar{x} = \frac{2,09 + 2,16 + 2,18 + 2,19}{4} = 2,16$$
.

2) Стандартное отклонение S единичного определения

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} = \sqrt{\frac{(2,09 - 2,16)^2 + (2,16 - 2,16)^2 + (2,18 - 2,16)^2 + (2,19 - 2,16)^2}{4-1}} = 0.046\%$$

3) Стандартное отклонение среднего арифметического

$$S_{\bar{x}} = \frac{S}{\sqrt{n}} = \frac{0.046}{\sqrt{4}} = 0.023\%.$$

4) По таблице для P=0,95 и f=n-1=3 находим критерий Стьюдента $t_{0.95;3}=3,\!18.$

Тогда границы доверительного интервала:

$$\overline{x}-t_{P,f}\cdot S_{\overline{x}} < x_0 < \overline{x}+t_{P,f}\cdot S_{\overline{x}}$$
 2,16 — 3,18·0,023 $< x_0 <$ 2,16 + 3,18·0,023 или $2,09 < x_0 <$ 2,23 или $x_0 =$ 2,16 \pm 0,07.

Ответ: Так как истинное значение x_0 =2,12% входит в доверительный интервал, систематических погрешностей нет.

5) Рассчитать удельную α и эквивалентную λ электропроводимости 1M раствора KCl, если сопротивление ячейки R=7,35 Ом. Площадь электродов S=2 см², расстояние между ними l=15 мм.

Решение

Применим закон Ома

$$R = \frac{1}{x} \cdot \frac{l}{S}$$
.

Следовательно, используя единицы SI, получим

$$\alpha = \frac{l}{S \cdot R} = \frac{15 \cdot 10^{-3}}{2 \cdot 10^{-4}} = 10.2 \text{ Cm} \cdot \text{m}^{-1},$$

$$\lambda = \frac{x}{c} = \frac{10.2}{1.00 \cdot 10^3} = 10.2 \cdot 10^{-3} = 0.0102 \,\mathrm{Cm} \cdot \mathrm{m}^2 \cdot \mathrm{моль}^{-1} = 102 \,\mathrm{Cm} \cdot \mathrm{cm}^2 \cdot \mathrm{моль}^{-1}$$

Ответ: $\alpha_{KCl} = 10.2 \text{ Cm} \cdot \text{m}^{-1}, \lambda_{KCl} = 102 \text{ Cm} \cdot \text{m}^{-1}$

3) Рассчитать рН раствора гидразина, если при 25° С ЭДС элемента

$Pt \mid X, \Gamma X (N_2H_4 \cdot H_2O) \mid KCl_{Hac} \mid Hg_2Cl_2 \mid Hg \mid Pt$

E=4 MB.

Решение

Слева — хингидронный электрод, справа — насыщенный каломельный $E=\phi_{np}-\phi_{neB}=\phi_{\kappa an}-\phi_{xr}=\phi_{\kappa an}-(\phi^0_{xr}-0.059 \text{ pH}).$

По таблице находим

 $\phi_{\text{кал}}$ =0,242 B, $\phi^0_{\text{хг}}$ =0,699 B, откуда

pH=
$$\frac{E - \varphi_{\kappa a \pi} + \varphi^0_{x e}}{0,059} = \frac{0,004 - 0,242 + 0,699}{0,059} = 7,8$$
.

Ответ: рН=7,8.

Вопросы

- 1. Виды погрешностей.
- 2. Как рассчитать дисперсию отдельного определения малой выборки?
- 4. Какие ионы имеют аномально высокую подвижность в водном растворе?
- 5. Математическое выражение закона движения ионов Кольрауша.
- 6. Как рассчитать ЭДС гальванического элемента?
- 7. Для чего используют элемент Вестона в компенсационной схеме измерения ЭДС ГЭ.
- 8. Чем потенциометрическое титрование отличается от обычного титрования?
- 9. При каких условиях стеклянный электрод может быть использован в качестве индикаторного для измерения рН?
- 10. Что характеризует коэффициент селективности ионоселективного электрода?

- 1. Если стандартное отклонение единичного определения S, то дисперсия равна: a) 2S; б) S^2 ; в) \sqrt{S} .
- 2. Удельная электропроводимость электролита зависит от:
 - а) природы электролита и температуры;
 - б) формы сосуда для определения электропроводности;
 - в) константы ячейки для определения электропроводности.
- 3. Потенциал отдельно взятого электрода измерить:
 - а) можно;
 - б) нельзя;
 - в) можно, если это металлический электрод І-го рода.
- 4. Стеклянный электрод, используемый для измерения рН относится к:
 - а) мембранным электродам;
 - б) газовым электродам;
 - в) окислительно-восстановительным электродам.

Тема 8 «Спектральные методы анализа»

Практические задания

- 1. Выберите выражение общей скорости распространения электромагнитных волн.
 - a) $V = c/\varepsilon\mu$;
 - б) $V = c \sqrt{\varepsilon \mu}$
- 2. По какой формуле можно рассчитать энергию излучения или поглощения атомами электромагнитных волн.
 - a) $h \cdot v_{mn} = \sqrt{E_m E_n}$;
 - б) $h \cdot v_{mn} = E_m E_n$
- 3. По какой формуле определяется частота излучения молекулами света

a)
$$v = (E_m - E_n)/h = (E_{m(3\pi)} - E_{n(3\pi)})/h + (E_{m(\kappa o \pi)} - E_{n(\kappa o \pi)})/h + (E_{m(\epsilon p)} - E_{n(\epsilon p)})/h;$$

6)
$$v = (E_m + E_n) \cdot h = (E_{m(9\pi)} - E_{n(9\pi)}) \cdot h - (E_{m(\kappa o \pi)} - E_{n(\kappa o \pi)}) \cdot h - (E_{m(\kappa o \pi)} - E_{n(\kappa o \pi)}) \cdot h$$

- 4. Какое математическое выражение соответствует объединенному закону Бугера–Ламберта–Бера.
 - a) $\Phi_{\lambda} = \Phi_{o\lambda} \exp(-x_{o\lambda} cl)$;
 - σ) $Φ_{\lambda} = Φ_{ο\lambda}/exp(x_{ο\lambda} cl)$
- 5. Зависимость между какими величинами выражает спектр поглощения?
 - a) C or λ ;
 - б) D от λ
- 6. При спектрофотометрическом исследовании аммиачного раствора меди величина оптической плотности оказалась равной 1,20 при толщине исследуемого слоя раствора 30 мм. Молярный коэффициент поглощения 423. Вычислить концентрацию меди в растворе в мкг/мл.
 - a) 6,048;
 - б) 60,48
- 7. Вычислить молярный коэффициент поглощения раствора комплексного соединения железа с роданидом аммония. Величина оптической плотности раствора равна 1,13; при толщине исследуемого слоя раствора 20 мм. Масса железа, используемого для получения раствора, равна 3,136 мг.
 - а) 5; б) 500
- 8. Как рассчитать в спектрофотометрическом методе анализа концентрацию исследуемого раствора (C_x) по методу добавок.
 - a) $C_x = Ca \cdot D_x / (D_{x+a} D_x);$
 - б) $C_x = C_a \cdot D_x \cdot (D_{x+a} D_x)$
- 9. Что используют в методе атомно-абсорбционного анализа для получения характеристического резонансного излучения?
 - а) лампы с полым катодом;

- б) стабилизаторы
- 10. В чем заключается правило Стокса?
 - а) длина волны флуоресценции больше длины волны вызывающего ее ультрафиолетового излучения;
 - б) длина волны флуоресценции меньше длины волны вызывающего ее ультрафиолетового излучения
- 11. Каков линейный диапазон концентрации вещества в люминесцентном методе анализа?
 - а) 10^{-4} - 10^{-2} моль/л;
 - б) 10-7-10-4 моль/л
- 12. По какой формуле рассчитывается квантовый выход люминесценсии?
 - a) $\eta_{\kappa\theta} = \lambda N/(\alpha + \beta)N$;
 - δ) $η_{\kappa \theta} = \lambda / N(\alpha + \beta).$

Примеры решения задач

- 1. При определении биогенного микроэлемента в пищевом объекте фотоэлектроколориметрическим методом величина оптической плотности раствора, полученного после соответствующей обработки исследуемого объекта, оказалась равной 1,25. Объем полученного раствора составил 500 см³. Толщина исследуемого слоя раствора равна 20 мм. Молярный коэффициент поглощения равен 928. Определить содержание микроэлемента в полученном растворе в моль/л.
 - a) $6,73 \cdot 10^{-4}$
 - б) 6,73·10⁻⁵

Решение

$$D=1,25$$
 Для решения необходимо применить объединенный закон Бугера-Ламберта-Бера: $D=xCl$ $C=20$ $C=2$ $C=3$ C

2. Как связана оптическая плотность (D) с коэффициентом пропускания (T)?

Решение

- а) D = T Оптическая плотность является величиной обратной б) $D = \frac{1}{T}$
 - Ответ: б)

- 3. Вычислить коэффициент пропускания, если оптическая плотность исследуемого раствора равна 1,25.
 - a) 80%б) 8%

 $D = \frac{1}{T}$; $T = \frac{1}{D} = \frac{1}{125} = 0.8$

В процентах: $0.8 \cdot 100 = 80\%$

Ответ: а)

Вопросы

- 1. В чем заключается понятие оптической спектроскопии, ее классификация.
- 2. Основные положения квантовой, корпускулярной теории поглощения, излучения атомами электромагнитных волн.
- 3. Как определяется полная энергия молекулы?
- 4. Приведите примеры батохромного, гипсохромного сдвига спектра поглощения.
- 5. В чем заключается сущность спектрофотометрического метода анализа?
- 6. Что такое оптическая плотность раствора?
- 7. Какие факторы влияют на величину оптической плотности раствора?
- 8. Что такое спектр поглощения?
- 9. Какие явления вызывают отклонения от закона Бугера-Ламберта-Бера?
- 10. В чем заключается сущность метода атомно-абсорбционной спектрометрии; его отличия от спектрофотометрического метода?
- 11. Каковы преимущества атомно-абсорбционного метода анализа?
- 12. В чем заключается сущность и классификация люминесцентного метода анализа?

- 1. Что называется оптической плотностью?
 - а) логарифм отношения интенсивности прошедшего к интенсивности падающего на исследуемый раствор света;
 - б) логарифм отношения интенсивности падающего к интенсивности прошедшего через анализируемый раствор света.
- 2. Какая зависимость существует между величиной оптической плотности и концентрации?
 - а) прямопропорциональная;
 - б) обратная.
- 3. От чего зависит величина молярного коэффициента поглощения?
 - а) от длины волны падающего на исследуемый раствор света;
 - б) от концентрации и толщины исследуемого слоя раствора.
- 4. На каких приборах измеряют величину оптической плотности раствора?
 - а) на кондуктометрах;
 - б) на спектро-фотоэлектроколориметрах.

- 5. На чем основан метод атомно-абсорбционной спектрометрии?
 - а) на зависимости характеристического (резонансного) поглощения света от концентрации;
 - б) на зависимости поглощения от длины волны.
- 6. Каковы пути повышения чувствительности метода атомно-абсорбционной спектрометрии?
 - а) использование экстракционного варианта метода;
 - б) применение графитовой кюветы в сочетании с экстракцией.
- 7. Что является источником излучения в методе атомно-абсорбционной спектрометрии?
 - а) лампы накаливания;
 - б) лампы с полым катодом.
- 8. В какую область длин волн происходит смещение максимальной длины волны флуоресценции по сравнению с длиной волны возбуждения (стоксово смещение)?
 - а) в сторону увеличения;
 - б) в инфракрасную область.
- 9. На чем основан количественный люминесцентный анализ?
 - а) на зависимости интенсивности люминесценции от концентрации;
 - б) на явлении преломления света.

Тема 9,10 «**ХРОМАТОГРАФИЯ**»

Практические задания

1. При определении фурфурола смеси методом газовой хроматографии площадь его пика $S_{\phi y p \varphi y p o n a}$ сравнивали с площадью пика S_{ксилола}, который вводили в качестве стандарта. Для стандартного образца, содержащего 25% фурфурола, и исследуемого образца через

следующие результаты:

-	Стандартный образец		Исследуемый образец	
Вариант	S _{фурфурола}	S _{ксилола}	S _{фурфурола}	S _{ксилола}
	mm ²	MM^2	MM^2	MM^2
1	11	25	18,5	22
2	15	28	19,5	24
3	21	35	25	32

Принять k равным единице для обоих компонентов. Определить массовую долю (%) фурфурола в исследуемом образце.

Ответ: Вариант 1: Вариант 2: Вариант 3:

a) 47,78%

a) 35,45%

a) 33,65%

б) 39,61%

б) 37,92%

б) 30,21%

в) 48,86%

в) 38,73%

в) 32,55%

2. Рассчитать массовую долю (%) компонентов газовой смеси по следующим данным, полученным методом газовой хроматографии:

Газ	S, mm ²	k
Бензол	20,6	0,78
Толуол	22,9	0,79
Этилбензол	30,5	0,82
Кумол	16,7	0,84

Этилбензол: Ответ: Бензол: Толуол: Кумол: a) 21,95% a) 25,08% a) 35,14% a) 18,74% б) 24,72% б) 34,17% б) 20,43% б) 20,42% в) 22,12% в) 24,30% в) 34,92% в) 19,16%

3. Цис-1,2-дихлорэтилен в винилиденхлориде определяли методом газовой хроматографии, используя толуол в качестве внутренего стандарта, и получили следующие данные для градуировочного графика:

$$S_x/S_T$$
 0,72 0,90 1,08 1,28 ω , % 0,5 1,0 1,5 2,0

Рассчитать массовую долю (%) уис-1,2-дихлорэтилена в исследуемом образце по следующим данным о пиках определяемого и стандартного вещества (принять k=1):

Вариант	Пик <i>цис</i> -1,2- дихлорэтилен		Пик толуола		
	основание	высота	основание	высота	
1	18	35	15	52	
2	14	42	18	45	
3	12	60	15	50	

Ответ: Вариант 1:Вариант 2:Вариант 3:а) 0,55%а) 0,55%а) 1,05%б) 0,75%б) 0,75%б) 1,25%в) 0,65%в) 0,65%в) 1,15%

4. При определении адипиновой кислоты в продукте гидрокарбоксилирования бутадиена методом бумажной хроматографии полученые пятна, проявленные метиловым красным, вырезали, высушили и взвесили. Для стандартных смесей с различным содержанием адипиновой кислоты получили данные:

Навеску анализируемого образца m мг растворили в V мл воды и порции полученного раствора по 0,05 мл хроматографировали. Масса полученных пятен составила m_2 мг.

Определить массовую долю (%) адипиновой кислоты в анализируемом

продукте.

<u>1</u> J			
Вариант	m_1 , M Γ	V, мл	<i>m</i> ₂ , MΓ
1	100	10	85
2	150	20	107
3	200	25	165

Ответ: Вариант 1:Вариант 2:Вариант 3:а) 1,30%а) 2,93%а) 4,92%б) 1,60%б) 3,04%б) 4,37%в) 1,80%в) 3,72%в) 5,07%

5. Для определения диоксидифенилметана в пищевых продуктах использовали метод тонкослойной хроматографии. Для стандартных образцов получены следующие результаты:

Концентрация диоксидифенилметана,

Для построения градуировочного графика использована зависимость lg S - lg c. Навеску овощей массой m г обработали V мл спирта, который затем упарили до 5,00 мл, затем 0,02 мл его хроматгграфировали

методом ТСХ и получили пятно площадью S мм 2 .

Определить концентрацию диоксидифенилметана в овощах (мг/кг).

 Ответ: Вариант 1:
 Вариант 2:
 Вариант 3:

 а) 34,4 мг/кг
 а) 35,8 мг/кг
 а) 17,27 мг/кг

 б) 35,0 мг/кг
 б) 36,5 мг/кг
 б) 16,48 мг/кг

 в) 33,2 мг/кг
 в) 37,4 мг/кг
 в) 18,52 мг/кг

Вопросы

- 1. В чем сущность методов хроматографии?
- 2. Какие требования предъявляются к адсорбентам и растворителям ? Назовите наиболее распространенные растворители и адсорбенты в жидкостной хроматографии.
- 3. Какие способы применяют для определения эффективности хроматографических разделений?
- 4. Каковы области применения, достоинства и недостатки методов адсорбционной, газовой и тонкослойной хроматографии?
- 5. Какие устройства используются в качестве дозаторов?
- 6. Что представляют собой: a) дифференциальные детекторы; б) интегральные детекторы?
- 7. Дать определение понятий: а) высота хроматографического пика; б) ширина хроматографического пика; в) приведенный удерживаемый объем; г) общий удерживаемый объем.
- 8. В чем сущность качественного хроматографического анализа по величине удерживаемого объема?
- 9. В чем сущность методов количественного анализа: а) абсолютной калибровке; б) внутренней нормализации (нормировки); в) внутреннем стандарте?
- 10. Как выполняется качественный и количественный анализы методом распределительной жидкостной хроматографии на бумаге?

- 1. Вариант хроматографии, основанный на том, что в колонку с адсорбентом вводят порцию анализируемой смеси веществ в растворителе и колонку непрерывно промывают газом-носителем или растворителем:
 - а) фронтальный метод;
 - б) проявительный (элюэнтный) метод;
 - в) вытеснительный метод.
- 2. В хроматографической колонке происходит:
 - а) разделение компонентов анализируемой смеси;
 - б) обнаружение компонентов анализируемой смеси.

- 3. Детекторы по теплопроводности (катарометр), по плотности, по электрической проводимости, пламенный, пламенно-ионизационный (ПИД) и др. ионизационные детекторы относятся к группе:
 - а) интегральных детекторов;
 - б) дифференциальных детекторов.
- 4. Подвижной фазой в газовой хроматографии является:
 - а) жидкость;
 - б) газ;
 - в) твердый сорбент.
- 5. Неподвижной фазой в высокоэффективной жидкостной хроматографии является:
 - а) жидкость;
 - б) газ;
 - в) твердый сорбент.
- 6. Хроматографический качественный анализ основан на использовании характеристик удерживания:
 - а) высоты хроматографического пика;
 - б) площади хроматографического пика;
 - в) времени удерживания.
- 7. Хроматографический качественный анализ основан на экспериментальном определении зависимости высоты или площади пика от концентрации вещества и построении градуировочных графиков называется:
 - а) методом нормировки;
 - б) методом нормировки с калибровочным (градуировочным) коэффициентами;
 - в) методом абсолютной калибровки;
 - г) методом внутреннего стандарта.